
IAD-AlOI 746 GEORGIA INST OF TECH ATLANTA SCHOOL OF INFORMATION A--ETC F/S 9/2
I GLOBAL STATES OF A DISTRIBUTED SYSTEM.(U)
I UN AL M J FISCHER, N D GRIFFETH, N A LYNCH DAA629-79-C 0155

U.NCLASSIFIED GIT-ICS-G1/06 ARO-164%1.tn-Fl

. KEEKEEKD

JNCLASS I IEDI
SsICU-TY CLASSIFICATION OF THIS PAGE (W7e.. 00...f e /,d)

HRAD INSTRUCTIONS
REPORT DOCUMENTATION PAGE BE -O E COMPLETING FORM

. . i - NU 2. GOVT ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER

I 1 16 4 5 1. 10 -E L _ 0" 1 5
4. TITLE (and Subtilaip) TYPE OF REPORT & PERIOD COVERED

Global States of a Distributed System, Technical -<y

6 PFERFORMING ORG. REPORT NUMBER

TOM - S. CONTRACT OR GRANT NUMBER(s)

t~eMichael J./Fischer < DAAG29-79- C- 0155
Nancy D./Griffeth

VBN Nancy A.. Lynch /J- < . j& '-
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10 TASKAREA m U I NUMPERS

Georgia Institute of Technology
Atlanta, GA 30332

11. CONTROLLING OFFICE NAME AND ADDRESS IJ"

U. S. Army Research Office NuR 81
Post Office Box 12211 NUMBERO AGES
Research Triangle Park, NC 27709 6

14. MONITORING AGENCY NAME a ADDRESS(fI dilfernt froim CWntrolll Office) IS. SECURITY CLASS. (of this report)

-- r - Unclassified
!1Sa. OECL ASSIICATION/OOWN GRAOING

IS. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

I. DISTRIBUTION STATEMENT (of the abstact entered in Block 20. If different from Report) -

IS. SUPPLEMENTARY NOTES 2
The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

19. KEY WORDS (Cnlinue on re.erse aide It necee say and Identity oy oJoca inuober)

distributed systems algorithms
transaction processing
global states
checkpoints

so. AYNrACT (tin0- - FOemm afif If necovem d fifeuvio by block rnmaber)

0A global state of a distributed transaction system is consistent if no trans-actions are in progress. A global checkpoint is a transaction which must

view a globally consistent system state for correct operation. We present an
__ algorithm for adding global checkpoint transactions to an arbitrary distribut d

transaction system. The algorithm is non-intrusive in the sense that checkpo nt
transactions do not interfere with ordinary transactions in progress; however,
the checkpoint transactions still produce meaningful results.

DD 13 ET473 Em0lOF tNOV Ss 0sSOLETE UNCLASSIFIED
SECURIITY CLASSIFICATION OF TIS PAGE (When DoeO aIte*M)

, /7

School of

Information and Computer Science

GEORGIA INSTITUTE

OF TECHNOLOGY
81 7 20 " 09

wave#

GIT-ICS-81/06
GL STATES OF A DISTRIBUID M

MICHAEL J. FIscHER**
NANCY D. GRIFFEThe
NACY A. LYNCH

S% 0,000f

JUNE 1981

**Department of Computer Science

University of WashingtonIV
Seattle, Washington 98195 .

***School of Information and Computer Science 11

Georgia Institute of Technology1 n4-
Atlanta, Georgia 30332 ," ' :F..

This research was supported in part by the National Science Foundation under

Number DAAG29-79-C-0155 and Office of Naval Research Contracts N00014-79-C-0873

and N00014-80-C-0221.

GLOBAL STATES OF A DISTRIBUTED SYSTEM *

Michael J. Fischer
University of Washington

Nancy D. Griffeth Nancy A. Lynch
Georgia Institute of Technology Georgia Institute of Technology

ABSTRACT users of the banking system are thereby presented
with a view of the account balances which includes

A global state of a distributed transaction the possibility of money being "in transit" from
system is consistent if no transactions are in one account to another.
progress. A global checkpoint is a transaction
which must view a globally consistent system state One useful kind of transaction is a "check-
for correct operation. We present an algorithm point" -- a transaction that reads and returns all
for adding global checkpoint transactions to an the current values for the objects of the system.
arbitrary distributed transaction system. The In a bank database, a checkpoint can be used to
algorithm is non-intrusive in the sense that audit all of the account balances (or the sum of
checkpoint transactions do not interfere with all account balances). In a population database, a
ordinary transactions in progress; however, the checkpoint can be used to produce a census. In a
checkpoint transactions still produce meaningful general transaction system, the checkpoint can be
results, used for failure detection and recove4y: if a

checkpoint produces an inconsistent system state,
1. Introduction one assumes that an error has occurred and takes

appropriate recovery measures.
Computing systems operate by a sequence of

internal transitions on the global state of the For a checkpoint transaction to return a
system. The global state represents the collec- meaningful result, the individual read steps of
tive state of a set of objects which the system the checkpoint must not be permitted to interleave
controls. Often many primitive state transitions with the steps of the other transactions; otherwise
are necessary to accomplish a larger semantically- an inconsistent state can be returned even for a
meaningful task, called a transaction. Transac- correctly operating system, and it might be quite
tions are designed to take the system from one difficult to obtain useful information from such
meaningful or consistent state to another, but intermediate results. For example, in a bank data-
during the execution of the transaction, the base with transfer operations, an arbitrarily-
system may go through inconsistent intermediate interleaved audit might completely miss counting
states. Thus, to insure consistency of the some money in transit or count some transferred
system state, every transaction must either be money twice, thereby arriving at an incorrect value
run to completion or not run at all. for the sum of all the account balances.

Transactions are often the basis for concur- A checkpoint which is not allowed to interleave
rency control. In a distributed database system, with any other transactions is called a global
a standard criterion for correctness of a system checkpoint. In the bank database, a global check-
is that all allowable interleavings of transac- point would only see completed transfers; no money
tions be "serializable" (cf. [I]). However, there would be overlooked in transit, and a correct sum
are systems which can run acceptably with uncon- would be obtained for all account balances. In
strained interleavings. In a banking system, for general, a global checkpoint views a globally
example, a transfer transaction might consist of consistent state of the system.
a withdrawal step followed by a deposit step. In
order to obtain fast performance, the withdrawals In this paper, we present a method of imple-
and deposits of different transfers might be menting global checkpoints in general distributed
allowed to interleave arbitrarily, even though the transaction systems. We assume one starts with an

underlying distributed transaction system known to
be correct. Next we add some checkpoint transac-
tions C which are known to be correct if run when

*This research was supported in part by the no other transactions are running. Call the result-
National Science Foundation under grants MCS77- ing system S . Finally, we show how to transform
02474, ?CS77-15628, MCS78-01698, MCS80-03337, U.S. S into a new system S' which does the "same"
Army Research Office Contract Number DAAG29-79-C- thing as S and which turns each of the transac-
0155 and Office of Naval Research Contracts tions in C into a global checkpoint, i.e. one
N00014-79-C-0873 and N00014-80-C-0221. that always returns a view of a globally consistent

system state of the underlying transaction system.

_ _ _ -awash_

2

Our introduction of the global checkpoints is 3. An Abstract Distributed Transaction System
"nonintrusive" in the sense that no operations of
the underlying system need be halted while the In a database system, a transaction is usually
global checkpoint is being executed. Because of considered to be a sequence of operations on the
this, it is not always possible to have the global database entities which should be performed accord-
checkpoint view a consistent state in the recent ing to some concurrency control policy. For our
history of the underlying transaction system, for purposes, we do not need to look inside the transac-
that system might enter consistent states only tions -- all that we require is that a particular
infrequently because of heavy transaction traffic, transaction can be requested at any time, and once
Thus, instead of viewing a consistent state that requested, it will eventually run to completion.
actually occurs, our global checkpoints view a What the transaction does while it is running and
state that could result by running to completion how it interacts with other concurrent transactions
all of the transactions that are in progress when does not concern us. We simply assume a distributed
the global checkpoint begins, as well as some of system which understands the initiation and comple-
the transactions that are initiated during its tion of transactions at its external variables.
execution.

We make the technical restriction that each
2. A Model for Asynchronous Parallel Processes transaction can be invoked only once; thus, our

transactions should be thought of as instances of
The formal model used to state the correctness the usual database notion of transaction. We also

conditions and describe the algorithm is that of assume that an infinite number of transactions are
[2]. Only a brief description is provided in this possible, although only a finite number can be

paper; the reader is referred to [2] for a complete, running at any given time; thus, our systems never
rigorous treatment. stop.

The basic entities of the model are processes Formally, an abstract transaction system is a
(automata) and variables. Processes have states distributed system whose external variables, called
(including start states and possibly also final ports, have a special interpretation. Let T be an
states), while variables take on values. An atomic infinite set of transactions. Each port can c-itain
execution step of a process involves accessing one a finite set of transaction status words, each of
variable and possibly changing the process' state which is a triple (t, a, s) , where t cT , a is
or the variable's value or both. A system of an arbitrary parameter or result value of the
processes is a set of processes, with certain of transaction, and se ('RUNNING', 'COMPLETE') des-
its variables designated as internal and others as cribes the state of the transaction. We require
external. Internal variables are to be used only that each port can be accessed by only one process,
by the given system. External variables are called the owner of the port.
assumed to be accessible to some "environment"
(e.g. other processes or users) which can change The intended operation of the system is as
the values between steps of the given system. follows: A user initiates a transaction t with

argument a by inserting the triple (t, a,
The execution of a system of processes is 'RUNNING') into the set of transaction status

described by a set of execution sequences. Each words in some port. Eventually, the system
* sequence is a (finite or infinite) list of steps replaces that triple by a new triple (t, b,

which the system could perform when interleaved 'COMPLETE') in the same port. The value b is
with appropriate actions by the environment. Each the result of the transaction. We assume the user
sequence is obtained by interleaving sequences of behaves correctly in not trying to initiate the
steps of the processes of the system. Each process same transaction more than once and in not modify-
must have infinitely many steps in the sequence ing the transaction status word once a transaction
unless that process reaches a final state, has been initiated. Likewise, a correct abstract

transaction system never changes the ports or
For describing the external behavior of a modifies the transaction status words except as

system, certain information in the execution described above.
sequences is irrelevant. The external behavior of
a system S of processes, extbeh(S) , is the set Thus, a correct abstract transaction system
of sequences derived from the execution sequences running with a correct user maintains a global
by "erasing" information about process identity, invariant that for each transaction t c T, there
changes of process state and accesses to internal is at most one port containing a transaction status
variables. What remains is just the history of word with t as first component, and there is at
accesses to external variables. This history takes most one such word in that port. We call that word,

* the form of a sequence of variable actions, which if it exists, the status word for t , and we say
are triples of the form (u, X, v) , where u is t is running or completed depending on the third

* the old value read from the variable X, and v is component of its status word. We say t is
the new value written by an atomic step of the latent if it has no status word. The conditions

i system. The external behavior completely charac- above imply that the only possible transitions in
terizes the system from the user's point of view; the status of a transaction are from latent to
two systems with the same external behavior are running and from running to completed; moreover,
completely indistinguishable to the user. every running transaction eventually becomes

completed. Note also that there is no a priori

3

bound on the number of transactions that can be (a) The value returned by a checkpoint does not
running simultaneously. reflect what actually happened in the history

of execution; only what might have happened if
4. Checkpoint Transactions certain transactions initiated after the start

of the checkpoint had not occurred.

Let CST be a distinguished set of transac-
tions called checkpoints. Members of T-C are (b) Any side-effects of checkpoint transactions
called ordinary transactions. The execution of a are discarded, so other transactions continue
checkpoint transaction and the result it returns to operate as if no checkpoints had ever taken
are valid if no other transaction is running while place.
the checkpoint is. While we make no restrictions
on what a checkpoint does, the intuition is that With this motivation in mind, we now turn to
a checkpoint needs to look at a globally consistent the definitions needed to state the formal correct-
system state in order to work properly, that is, a ness conditions for the system S'
state of the system that occurs when no transactions
are in progress. For example, the checkpoint might Let X be a port and u, v be sets of
be an audit of the account balances in a simple transaction status words. We call the variable
banking system, or it might be a consistency check action (u,Xv) a port action. Let PA be the
in a file system. These two examples are pursued set of all port actions. A behavior sequence is a
further in Section 6. finite or infinite sequence of port actions, i.e.

Our goal in this paper is, given a transaction a member of B - PA U PA

system S with checkpoints, to construct a new Let h be a map which erases checkpoint
transaction system S' which does the "same" thing status words from port values, that is, if u is
as S for non-checkpoint transactions and which st orsafron staues, then
returns a valid result for each checkpoint transac- a set of transaction status words, then
tion. A straightforward implementation of S'
would simply suspend further processing of transac- h(u) - {(t,a,s) [(t,a,s) a u and t a T-C}.
tions when a checkpoint is requested, wait for any Extend h to port actions by
transactions currently in progress to complete, and
then run the checkpoint. After the checkpoint has h((u,X,v))-(h(u), X, h(v))
been completed, normal processing of transactions

can be resumed. Extend h further to B by applying it component-

In many practical situations, however, such wise.

a solution is highly undesirable, for the entire Let e . Define two functions:
system must wait while a checkpoint is being per-
formed. This is likely to take a considerable running(e) - {t aT le - •1 -(u,X,v) - e2 and
length of time since checkpoints may require
reading the entire system state. (t,a,' RUNNING') au for (ta,

In Section 5, we present a solution which 'RUNNING') some transaction
permits checkpoints to be run concurrently with status word,*e 1 c PA (uXv) c
the normal processing of ordinary transactions. I
The price we pay is in having a slightly less PA, and e 2 B}
appealing correctness condition for the result of
the checkpoint. Since normal transactions are not completed(e) - (t T I e -e.(u,X,v)e 2 and
suspended, the system may never reach a globally (t,b,'CONPLETED') cv for (t,b,
consistent state, so it is not obvious how a

meaningful result can be obtained at all. Our 'COMPLETED')_ some transaction
approach is to run the checkpoint on a globally status word, e1 . PA., (u,X,v)a
consistent state obtained by the following steps:

PA, and e 2 aB } .

i. Disable the initiation of further
transactions

at each of the ports. Thus, running(e) is the set of transactions which
are running at some time during e , and com-

2. Run to completion any transactions in progress. pleted(e) is the set of transactions which have

completed in e
To do this and still not interfere with the process-
Ing of normal transactions requires that we split Let eal , t crunning(e), and i aN . t
the computation into two parallel branches. One starts at step i of e if i is the length of
branch continues to simulate S on the ordinary th-elonge~st prefix eI1 of e for which tA

transactions; the other branch handles the execu- running(el)
tion of the checkpoint as described above. When
the checkpoint is complete, the result is stored An abstract distributed transaction system S'
back in the appropriate transaction status word is a faithful implementation of a system S with
and the branch discarded. checkpoint set C if the following conditions hold.

Consequences of this strategy are: 1. (Faithfulness). Let e eextbeh(S) such that

• 2 1

h(e) -e (i.e. e contains no checkpoint S0 ignores checkpoints but otherwise acts
transactions). Let a: C+N be a partial just like S S , ceC , does exactly the same
function with domain dow(a) . Then there c

exists e't extbeh(3') such that h(e')- e, thing as So up until checkpoint c is requested.
running(e')- running(e) u doin(a), and for all At that time, the computation of S begins to
t cdom(o), t starts at step o(i) in e'. c

diverge from that of So . Sc continues behaving

extbeh(S). like S , but it starts ignoring certain new trans-
actions that are being processed by So . Even-

3. (Validity of checkpoints). Let e'c extbeh(S'), tually, it ceases processing new transactions
c eC , and suppose c runs to completion in e' entirely, and all the transactions currently in
and produces result b . Let i be the step at progress are run to completion. At that time, Swhich c starts in e' ,and let el' be the c

' runs checkpoint transaction c , and when it com-
prefix of a' of length i . Let e2 ' be the pletes', S writes the result back into the trans-

shortest word such that el'e 2 is a prefix of action status word at the initiating port. Sc has

e' and cc completed(el'e 2'). Then there then completed its task and can terminate.

exists e e extbeh(S) such that c runs to
completion in e and produces result b , and The structure of S' is similar to that of
e satisfies the following. There exist words S . Each process and variable of S has a corres-

e, e 2, f such that e1e2f is a prefix of e , ponding process or variable in S' . Process k

and 2 of S' simulates process k in each of the S.
I {O) u C . Similarly, internal variable X of

(i) h(e1e2) = ele 2 ; S' simulates internal variable X in each of the

Si " The states of processes in S' are labelled

sets of states of corresponding processes of S ,
and values of variables in S' are labelled sets(iii) running(ss 2) 2running(el'e2

1) of values of corresponding variables of S , where
(iv) c c completed(ele f) and fcl the labels are taken from {0} u C . S and S'

v 2 have identical ports and port values.
- running(ele2f) - completed(ele2).

We now describe in some detail the operation
Conditions (1) and (2) insure that S' of the processes in S . Each process doesfaithfully simulates S on the non-checkpoint c

trat onsland that the presence or absence of exactly the same thing as the corresponding process
transactions adtathprsneoabncof of S until it learns that checkpoint c hascheckpoint transactions does not affect the process- o
ing of other transactions by S' . Condition (3) been requested. There are three ways that a process
insures that S' computes acceptable results for might learn this. It might access its port and see
the checkpoint transactions. In particular, the the transaction status word for c . In this case,
result of each checkpoint must be a value obtain- that process is called the checkpoint initiator.
able by some computation of S which (I) runs no Secondly, it might receive a message" from the
checkpoints before the given checkpoint, (ii) checkpoint initiator informing it of the start of
agrees with the computation of S' up to the the checkpoint. Finally, it might read an internal
point where the checkpoint began (again ignoring variable and detect that the computation of S
other checkpoints), (iII) only initiates transac- has begun to diverge from that of So . enabling it
tions thereafter which actually occurred in S' ,
and (iv) runs the checkpoint after all the transac- to deduce that the checkpoint has started.
tions in progress at the time of the checkpoint
request together with any transactions initiated When the checkpoint initiator discovers the
after the checkpoint have completed, thereby start of the checkpoint, it broadcasts this fact
insuring a valid result, to the other processes of SC . Each process of

5. A Faithful Implementation Sc upon learning of the initiation of the check-

point makes a private copy of its port and there-
Given an abstract distributed transaction after refers to its private copy rather than the

system S with checkpoint set C , we sketch how real port. In this way, future transaction
to construct a new system S' which faithfully requests are ignored by Sc , and results of
implements S . transactions produced by S (which might differ

S' operates by simulating a number of copies from those produced by SO) do not affect the realofS:a "base" copy SO and a copy S forc ports. When a process of S finally discovers
ceach cc C . So processes all of the non- that all of the transactions at its port have com-

checkpoint transaction requests received by S', pleted, it sends back an acknowledgement to the
and S processes checkpoint transaction c . checkpoint initiator. When the initiator has

received an acknowledgement from each process

• , -"- - _-i- new--]_

5

(including itself), it begins processing the check- the conditions for being a faithful implementation
point by placing the checkpoint request in its own of S . It remains to verify however that S' is
private copy of its port. All of the processes of a correct abstract distributed transaction system,
Sc continue operating and serve collectively to that is, that every transaction which is requested

process the checkpoint c . When c completes, will eventually run to completion.

the checkpoint initiator copies the final transac- This property holds for non-checkpoint
tion status word for c from the private copy of transactions by the safety property and the fact
its port back into the real port. that it holds for S . It holds for checkpoint

The correctness conditions of Section 4 are transactions because each of the phases in process-

quite strong and do not permit S' to make any ing a checkpoint terminates. Eventually a request
for checkpoint c gets noticed by the process ofaccesses to the ports other than those made by S0 " S which owns the port; otherwise, S and hence

Therefore, the simulation of the S ,ccC ,must Sc wihontepr;ohrisScanhec
c S would fail to process future trausactions origi-

be coordinated with that of SO so that all real nating at that port. After the checkpoint request

part accesses by S are "piggybacked" onto port is noticed, the checkpoint initiator notifies all
c other processes of S ; hence, eventually all ofc

accesses by S0 . The basic strategy is that S the other processes learn of the request. After
runs freely, but a process of Sc wishing to each process becomes aware of the checkpoint, it

access the real port must wait until the corres- stops accepting requests for new transactions;
ponding process of S0 is ready to make its next hence, eventually Sc stops processing new

port access. The two (or more) accesses are then transactions. Sc continues to simulate S on the
combined into one and performed simultaneously, transactions that it has accepted; they all even-
The accesses never conflict because each process of tually complete since they would in S . Each
Sc does the exact same thing as the corresponding process eventually acknowledges completion to the
process of So up until the point where it dis- initiator, so eventually the checkpoint transac-poes ofe stt uo the hkpoint. whereait , it- tion itself is started. S continues to simulate
covers the start of the checkpoint. Thereafter, it c

only modifies the status word for c , whereas S , so eventually the checkpoint transaction will
processes of S0 only modify status words for complete and produce a valid result, which is

copied back into the port.
ordinary transactions.

Hence, S' is an abstract distributed trans-
At any point in the computation, only a finite action system which faithfully implements S , as

set D of checkpoints have ever been initiated, so required.
the computation of every Sc , c e C-D , is identi- WWe remark that under certain naturally-
cal to the computation of S0 and need be repre- occurring conditions, the efficiency of S' can

sented only once. As soon as a process of S' be made to approach the efficiency of S . Namely,
discovers that checkpoint c is in progress, assume that all checkpoint transactions originate
either by being the checkpoint initiator, receiving at the same port. Then it is an easy matter to
a message from the checkpoint initiator, or by modify the checkpoint initiator so that only one

reading an internal variable in which the cth checkpoint is handled at a time. If several are
requested simultaneously, the initiator will pick

component differs from the 0 th , it splits the one to process and wait until it completes before
simulation of Sc from that of S0 and from then handling another. Since only one checkpoint c

on, the two simulations continue independently, as is running at a time, each process of S' need

described above. Hence, S' actually simulates only simulate two processes: the corresponding
a finite but growing set of computations, process of S and the corresponding process of

S . When a process becomes aware of the request
In order to carry out the above implementation, c

S' needs a mechanism which permits the checkpoint of some checkpoint Sd , dO c , then it knows that
initiator to communicate with every other process, checkpoint c must have completed; hence it
In any particular application, such a comunica- terminates the simulation of S . Thus, the
tion mechanism would probably already exist in the c
underlying system S . However, if it isn't storage needed by 5' for the internal variables
already there, then we require that S' be and process states is only double that of S
augente with such a facility. (In practice, one would probably only keep dupli-
augmented hcate copies of those objects for which the two

Theorem. Let S be an abstract distributed executions So, Sc really produce different
transaction system with checkpoint set C , and values.) Likewise, the time required by S'
let S' be the system described above. Then S' when appropriately measured, should be at worst
is a faithful implementation of S . double that of S on the particular computations

actually simulated.
Proof Sketch. We omit the tedious but

straightforward verification that S' satisfies

6

6. Applications of Global Checkpoints completion, then completion of the first depends
on completion of the second, and our algorithm,

Global checkpoints can play an important role which might decide to exclude the second from a
in the design of distributed systems for error checkpoint, would wait forever for the first trans-
detection, error recovery, or both. action to complete. Our formal definition of a

transaction system excludes the possibility of
For error detection, their use is in identify- system-initiated transactions.

ing inconsistencies in global system states that
should be consistent. We have already alluded to Acknowledgement
this use in the simple banking system example in
which the only allowable transactions are to trans- We are grateful to Mike Merritt for many help-
fer funds from one account to another. The sum of ful coaments and suggestions.
the account balances is the same in every globally
consistent state. Therefore, our algorithm can be References
used to obtain that sum by running a global check-
point transaction which simply reads each of the [I] K.P. Eswaran, J.N. Gray, R.A. Lorne and I.L.
account balances and adds them all up. An error Traiger, "The Notions of Consistency and
is indicated if this sum is not what was expected. Predicate Locks in a Database System," Coma.

AM 19, 11 (November 1976), 624-633.
A similar situation occurs in the design of

file systems. Often a directory must be kept con- [2J N.A. Lynch and M.J. Fischer, "On Describing
sistent with the actual contents of a disk. A global the Behavior and Implementation of Distributed
checkpoint might read the items in the directory Systems," Theoretical Computer Science 13
and check that they correspond with what is really (1981), 17-43.
on the disk. As long as no directory modification
transactions were in progress when the checking [3) E.D. Lazowska, H.M. Levy, G.T. Almes, M.J.
was done, then a discrepancy would indicate a true Fischer, R.J. Fowler and S.C. Vestal, "The
file system error. Our global checkpoint algorithm Architecture of the Eden System," Technical
can be used to detect such inconsistencies. Report 81-04-01, Department of Computer

Science, University of Washington (April 1981),
For error recovery, global checkpoints can be 21pp.

used to save the relevant part of the global state
of the system so that in the event of a crash, the [4) D.J. Rosenkrantz, R.E. Stearns and P.M. Lewis,
system can later be restarted from that point in II, "System Level Concurrency Control for
the computation. For example, a global checkpoint Distributed Database Systems," ACM Transactions
could be used to provide a restart capability in on Database Systems, Vol. 3, No. 2 (June 1978),
the migrating transaction model of Rosenkrantz, 178-198.
et al. [4] by having it return the values of all
of the entities in the database.

Another such application arises in the use of
the Eden system which is being developed at the
University of Washington [3]. That system is
object-based and includes as a primitive kernel
operation a checkpoint operation that writes a
single object to stable storage. The object itself
decides when it is in a consistent state and hence
when the checkpoint can be performed. If the
object later crashes, it is restored from the
version on stable storage. To extend this check-
point facility to groups of related and cooperating
Eden objects requires that the objects coordinate
their checkpointing activities so that the versions
saved on stable storage are globally and not just
locally consistent. That is just the problem we
have been treating in this paper if we take
"transaction" to mean the portion of computation
that an individual Eden object is in an inconsis-
tent state, and if we assume further that an
object only enters an inconsistent state in
response to some external stimulus (corresponding
to a transaction request). Our global checkpoint
algorithm could then be applied to produce a
globally consistent system state on stable storage
by running the "global checkpoint" transaction
which simply checkpoints each of the objects in
the group. Note that our algorithm requires the
independence of transactions. If one transaction
can initiate another and then wait for its

